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Abstract. An explicit and uniform construction for coherent states (cS) for all the
SU(N) groups is given and, on this basis, their properties are investigated. The ¢s are
parametrized by the dots of a coset space, which is, in this particular case, the projective
space €' PV =1 and which plays the role of the phase spacs in the corresponding classical
mechanics. The logarithm of the moduotus of the ¢s overlap, being mterpreted as a
symmetric in the space, gives the Fubini-Study metric in C P 1, The classical limit is
investigated in terms of operator symbols. = = P~! (where P is the signature of the
representation) plays the role of Planck’s constant. The classical Limit of the so called
star comtutator of the symbols geperates the Poisson bracket in the comresponding
phase space. The ¢S form an overcompleted system in the representation space and, as
quantum states possess a minimum uncertainty, they minimize an invariant dispersion of
the quadratic Casimir operator.

1. Introduction

As is well known, coherent states (CS) are widely and fruitfully used in different
arcas of theoretical physics [1-5]. The cs introduced by Schrodinger and Glauber
turned out to be orbits of the Heisenberg-Weyl group. This observation, by analogy,
allowed some general definition of Cs for any Lie group [6,7] to be formulated as
orbits of the group factorized with respect to a stationary subgroup. A connection
between the ¢s and the quantization of classical systems, in particular systems with
a curved phase space, was also established [8,9]. By origin, the ¢S are quantum
states, but, at the same time, they are parametrized by dots of the phase space of
a corresponding classical mechanics. This circumstance makes them very convenient
for analysing the correspondence between quantum and classical descriptions. All
this explains the interest in both the investigation of general problems of c$ theory
and the construction of Cs of concrete groups.

The cs of such important physics groups as SU(/N) are of special interest, in
particular in connection with the description of spinning and isospinning systems.
The ¢s of the group SU(2) are well known and constructed explicitly. One can point
out some of the first references [10-15], where these states were constructed from
the basis of the well investigated structure of the SU(2) matrices in the fundamental
representation. Another approach to the Cs construction of the SU(2) group was used
by Berezin [8,9]. This approach was connected with the use of the representations
of the SU(2) group in the space of polynomials of the power not more than a given
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one. As to the Cs of the SU(N) groups with arbitrary N, their explicit construction,
in the framework of the general definition, by means of a direct action of unitary
representation operators on some vectors (for example on highest weights), using
only commutation relations between generators, is a complicated problem, where
complications essentially grow with the number N (one ought to say that many of
the properties of the Cs can be derived from the general definition without giving them
an explicit form [16], and used, for example, in the derivation of 1/N decompositions
{17], in path integral construction [18] and so on [19]). Nevertheless, the problem
can be solved explicitly if appropriate representations of the SU(NN') groups, namely
representations in the space of polynomials of a fixed power are chosen. Using such
representations, we construct here the cs for all the SU(N) groups in a uniform
way and, in particular, as orbits of highest weights, and on the basis of this explicit
form we investigate some properties of the CS and the problem of the classical limit.
The method used can be considered as a generalization of Berezin’s method for the
SU(2) group in a gauge-invariant form (with an extended number of variables in the
coset space), and Gilmor’s method of a wavefunction construction for the system of
many identical N-level atoms in an external field, with a linear interaction for the
generators of the SU(V) algebra [20].

The representations in the space of polynomials with a fixed power are equivalent
to the total symmetric irreducible unitary representations of the SU(N) groups.
The stationary subgroups of the highest weights, in the case under consideration,
are U(N — 1), so that the ¢S are parametrized by dots of the coset space
SU(N)/U(N — 1), which plays the role of the phase space of the corresponding
classical mechanics and, at the same time, is the well known projective space C PV-1,
The logarithm of the modulus of the Cs overlap, being interpreted as a symmetric
in the space CPN~1, generates the Fubini-Study metric in the space. The Cs form
an overcompleted system in the representation space and, as quantum states, they
minimize an invariant dispersion of the quadratic Casimir operator. The classical
limit is investigated in terms of operator symbols, which are constructed as mean
values of the operators in the cs. The quantity h = P~!, where P is the signature of
a representation, plays the role of the Planck constant. The classical limit of the so
called star commutator of the symbols generates the classical Poisson bracket in the
corresponding phase space. In addition, we present a direct way of constructing the
SU(2) cs in a Fock space. This derivation of the Cs of the SU(2) is technically new and
instructive to our mind as it allows both ways to be compared and problems with the
N > 2 generalization can be better understood. The present work is a continuation
of our papers [21], where some of the results were preliminarily expounded.

2. Construction of cs of the SU(N) groups

We are going to construct the cs of the SU(IN') groups as orbits in some irreducible
representations of the groups, factorized with respect to stationary subgroups. First,
we describe the corresponding representations.

Let CV be the N-dimensional space of complex lines z = (z,),u = LN

with the scalar product (z,z") = E“ Zyz,, 0 =1, N and CN is the dual space of
compiex columns with the scalar product (2,2")5 = ), £#2#. The anti-isomorphism
is given by the relation z « # ¢ z, = 2*. The mixed (Dirac) scalar product between
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the elements of C™ and CV is defined by the equation
(z,28)=(&,8)g = (¢, 2)c = 2, 7" &)

Let g be the matrices of the fundamental representation of the SU(N) group.
This representation induces irreducible representations of the group in the spaces Il p

and i p Of polynomials of a fixed power P on the vectors z and Z respectively,

T(g)‘lfp(z)x‘llp(zg) z, = 29 Ypocllp
T(@)¥p(2) = Vp(5,) 2,=g"'%2 Wp(3) eil,. @)

il

The anti-isomorphism z + Z induces the correspondence ¥ p(2) = ¥ (z). The
representation (2) is equivalent to the one on total symmetric tensors of signature P.
So, we will call P the signature of the irreducible representation.

Clearly the monomiais

P!

WP,{E}(Z) = nl!...n

R 3)

=7}

form a discrete basis in Ilp, and the monomials Wp (.1(3) = Y p (n}(2) form a
basis in I . The monomials abey the remarkable relation

Z ‘I’P,{n}(z’)‘l'a{n}(.%) = (z’, E)P (4)
{n}

{n} = {niree sy

which is group invariant on account of the invariance of the scalar product (1) under
the group transformation, {z,, 2.} = {2, ). We also introduce the scalar product of
two polynomials

(@pl¥p) = [ To () dun (2, 2) ©

dup(z,2z) = %Plé(ZIz#[z - 1) Hdi dz,
dzdz = d(|z[*)d(arg z).

Using the integral

/ dp; .. / deﬁ(Zpﬁ—l) Hpn., _ ( . n,!

Sl + N - 1)!

it is easy to verify that the orthonormality relation holds;

(¥p(n}| ¥ pay) = (Pn|Pyn') = 610y 1) ©
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The completeness relation takes place as well

Y 1Pa)Pnl=1p Q)
{n}

where |P,n} and (P,n| are Dirac’s notation for the vectors ¥p..(2) and
¥ p (n}(#) respectively, and I, is the identity operator in the irreducible space of
representation of signature P.

It is convenient to introduce the operators aL and o¥, which act on the basis
vectors by formulae

'n'u-!-l
P+1

aL\IIP,{n}(z) = 2,¥p (a3(?) = al|P,n) = [P+1,...,n,+1,..}

s— L)

[a*,al] = 8}, [a*,a"] =[a],a]] = 0. ®

a
W p (n)(2) = 5=V p ny(2) = a¥|P,n) =/ Pn,|P~1,...;n
"

One can find the action of these operators on the Jeft,

n 1 8 .
<P,n|a‘.L= T;—(P—l,...,nu—l,...l=—}S-a—éﬂ:qlp,{n}(z)
(P,n|a* = \/{P+1)(n“+1)(P+1,...,n#+1,...|

= (P+ 1) ¥p (3 (5). 9)

Their quadratic combinations A} can serve as generators in each irreducible
representation of signature P,

AZ:a’a"—z 9

= 2y [AZ,Ag] = §5AL - &5 A} (10}
13

APy = /o, (n,+ DIP....n, - L,...on, +1,...) pE v

A¥|P,n) = n,|P,n) > AL P,ny = P|P,n).
"

Clearly, the Af are Cartan’s generators and (n,,...,ny) are the weight vectors.

The independent generators ['_,a = 1, N? — 1, can be expressed in terms of the
operators A},

Pu = (Fa): Ag [Pa’f‘b] = ifabcf‘c (1 1)

where I' are the generators in the fundamental representation, [[' ), T'}] = if 3.,
and f,,. are the structure copstants of the SU{/N) group. The quadratic Casimir
operator C, = ¥, ['2 can only be expressed via the operators Ay, by means of the
well known formula
1 1
DT, (TN = 5885 - 5576765 (12)
a
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and evaluated in every irreducible representation explicitly,

- P(N + P)(N -1) L
VAN V_,_'“‘
w A = 2N Ay N;

Now we are going to construct the orbits of highest weights (of a vector of the
basis (3) with the maximal length /3" n? = P). Let this highest weight be the state
¥ p (po.0y(2) = (2,)7. Then we get, in accordance with (2),

T(9)¥ppp.y(2) =l2,8{1" = (2. 0)F  a* =g a4
where the vector it € € is the first column of the SU(N') matrix in the fundamental
representation.

If we interpret the representation space as a Hilbert one in quantum mechanics,
then we have to identify all the states which differ from each other by a constant
phase. For this let us turn to the states of the orbit (14). One can notice that the
transformation arg it* — arg @* 4+ X changes all the states (14) by the constant phase
exp{iP ). So, we can treat the transformation as a gauge one in a certain sense. To
select only physically different quantum cs from all the states of the orbit, we have
to impose a gauge condition on i, which fixes the total phase of the orbit (14). Such
a condition may be chosen in the form 3, arg ## = 0. Taking into account that the
quantities 7 obey the condition Y |@#|? = 1, by their origin as elements of the first
column of the SU( V) matrix, we get the explicit form of the cs of the SU{ V) group
in the space Il 5:

‘I’P,a(z) = (2, ﬁ>P (13)

Sl =1 > argi* =0. (16)
I p

In the same way we construct the orbit of the highest weight ¥ p (pg 4 (Z) = (zH"
in the space I1 5, and the corresponding cs have the form

Up,(2) = (u,5)” ’ (7

Ylu =1 > argu, =0. (18)
B 13

Clearly, ¥p ;(2) = ¥p ,(£),2 © Z,u = @

It is easy to see that all the elements of the discrete basis (3) with weight vectors
of the form (n, = 8YP,u = 1,N) belong to the Cs set (15) with parameters
(@* = 6#P,u = 1, N). An analogous statement is valid for the dual basis and to
the cs (17).

The quantities @ and w, which parametn'zed the cs (15) and (16), are elements
of the coset space SU(N)/U(N —1), in accordance with the fact that the stationary
subgroups of both the initial vectors from the spaces Il and i, are U(N —1). At
the same time, the coset space is the so called projective space C' PV -1 (we remember
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that the complex projective space is defined as the set of all non-zero vectors z in
CN, where 2 and Az, ) # 0, are equivalent [22]). Equations (16) or (18) are just
the possible conditions which define the projective space. The coordinates u or 4
are called homogeneous in CPN-1, Thus, the constructed CS are parametrized by
the elements of the projective space C PN~1, which is a symplectic manifold [22] and
can therefore be considered to be the phase space of classical mechanics.

To decompose the cs in the discrete bases, we can use the scalar product (5)
directly, but there exists a simpler way. One can use relation (4), as the right-hand
side of equation (4) can be treated as cs (15) or (17). Thus, it follows from (4)

Up(z) = Z‘IIP,{n}(ﬁ)‘I’P,{n}(z)' (19)
{n}

This also implies
(P,ulP,n) = ¥p cny(u) (P,n|P,u) = ¥p 1,3 (@t) (20)

where |P,u) and (P,u| are Dirac’s notation for the ¢s ¥p ;(z) and ¥p  (Z)
respectively. So, we come to the statement which is important for understanding
the result: the discrete bases in the spaces Il and I are the same as the ones in
the cs representation.

The completeness relation for the CS can be extracted from the equation (6).
Using formulae (20) in integral (6), we get

/(P,n|P, (P, u| P,y dpp (i, u) = 81n) (0}

This proves the completeness relation

f|P,u)(P,u[duP(ﬁ,u)= I, (21)

We have to note that the explicit and uniform construction of the s for all the
groups SU{ N} proved to be possible due to the choice of irreducible representations
of the groups in the spaces of polynomials of a fixed power. One can try to construct
orbits directly, acting, by means of the unitary representation operators, on the highest
weights, but an explicit result can be found relatively easy only for the SU(2) group.
Later we demonstrate such a way for the latter case in a Fock space.

Let us have a Fock space set up by means of two types of Bose annihilation
and creation operators ay,a},) = 1,2,[ay,af] = 6, ;,. One can realize the
commutation relations [J;, J;] = ie;;, J; for the generators J;,i = 1,2,3, of the
SU(2) group in the Fock space, choosing the operators J; in the form (the so called
Jordan-Schwinger representation [23])

1 A
"fi = 35 Z ﬂ;f(ae)}wﬂx
Y
where o, are Pauli matrices. So one gets
j+=j1+if2=a'1"a2 j_=j]—ij2=a2+al
Jy = Ly — y)

ﬁ:j(j.l.l) ﬁ);:aj:a,x J=%(ﬁ1+ﬁz)-
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The occupation numbers basis |nyny) = (nyln,)~Y2(aF)(ad)™|0}, ny = 0, 1,...,
is correct for the operators J; and 7,
Jlnyng) = jlnyny) i= %(nl + 1) =0,1/2,1,3/2,...

Thus, we get the well known domains of variations in the eigenvalues j and
m. In terms of these quantities the basis |n,n,} can be written in the form

|nyng) = |f,m) = (5 + MG — m)N)"Y? (aF )+ (af ) -™(0). So

Jljym} = jli,m) Sili, m) = mj, m)
Jeliym) = GFm)GEm + Dlj,m=1)
(af)¥ ag )4

Joli ki)Y =0 u,a‘>=wlﬂ> i ~3) = "5 (0 @2

It is known that an element g of the SU(2) group can be parametrized by the Euler
angles ¢, 8, ©,, and presented in the form

cos %eeif“’ﬁ‘ﬂz)ﬂ isin %gei(‘m—ﬁoz)ﬂ
9= (isin%@e-i(%—wz)lz ms%ge—i(wﬁwz)/z)
— iqo:.fgeiﬂ.hei(pz.f; (23)
where J; = o;/2 are the generators of the SU(2Z) group in the fundamental

representation. Therefore, the operators of the representation T(g), acting in the
Fock space, can be written as

T(g) = erheifhgivrhs,
One can derive the formula

o]
(84

tan |a|.1°_) exp(2In | cos |al)f;) exp (—a— tan |al.f_,_)

e}

expgaj_i,—a*.f_) = exp (-—
(24)

which allows one to present the operators T(g) in a more appropriate form for
further calculations (an analogue of the normal form),

T(g) = eifpljseitan %Gj., (CDS %6)2jjeilall %9j+ei(p3j3. (25)
It is clear that the linear envelope of vectors from the Fock space, with j fixed,
forms an invariant and irreducible, relative to the representation T(g), subspace of

dimensionality 25 + 1. Let us construct the orbit of the highest weight |7, j}. Denote
such an orbit as

IjaW]_!B,‘PZ) =T(Q)Ij,j) (26)
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Using equation (25), one can calculate the orbit (26) in the ocupation numbers
representation,

) [ 251 . o
(n1nald, 01,85 02) = bp g2 m(ws 1gellvitenl/Zyn(igip lg e=iler—e2)/2yme

f 270 _
= 61”_‘_“2’2’- m(ul)ﬂl(uz)ﬂz (27)

where i* = gi* are elements of the first column of the SU(2) matrix (23). If we
interpret vectors of the orbit as quantum mechanical states, then all the vectors,
which differ from each other by a constant phase factor, have to be identified. In
the case under consideration a variation in the Euler angle ¢, changes only the
phase of the orbit (26) (it gives the the factor expidp,(ny + n,) /2 = expibdp,3). To
choose only one representative from the physical equivalent set of vectors we have to
impose a gauge condition, which fixes the angle ,. This means we have to change to
the coset space SU(2)/U(1) where U(1) is the Abelian stationary subgroup of Euler
angle ¢, rotations. The gauge condition we choose is ¢, = -%7:, which corresponds
to the condition 3", arg @* = 0 for the elements of the first column of the SU(2)
matrix. Besides, these elements originally obey the condition 37, |4*{* = 1. Thus,
physically different elements of the orbit (26), which we call the cs of the SU(2)
group, are parametrized by the elements of the projective space C P!, the latter
being the ordinary two-dimensional sphere. In the occupation number representation
(so called Bloch states [10]) they have the form

. 20 . ;
(runaliih = [ 2L atym (a2 o8
pTg:
ny+n, =25  4''=coslgeie/? @® = sin 19e'#/2
where the angle ¢ = %'n' — ¢, together with 6 and j are the spherical

coordinates of the mean values of the isospin vector in the CS, {j8p]f|j0¢) =
j(sin 6 cos , 5in 6 sin ¢, cos 6). Thus, the CS are parametrized by the dots of the
two-dimensional sphcre of the quantized radius P/2 = j = 0,1/2,1,.... The
completeness relation holds:

2741
47

[liseiiocianso0) = I au;00) = L 2 sin6 a0y @9)

where I is the identical operator in the representation space of signature P.

Thus, one can see that the ‘direct” way gives the same result for the case of the
SU(2) group (compare (28) with (20) and (3)), as we have previously obtained in
a simpler way. Moreover, the disentanglement of the representation operators for
N > 2, similar to formula (23), is a difficult problem, where the complexity essentially
grows with the pumber V. Some results of such a disentanglement for the SU(3)
group are presented in {24] and can serve as a illustration of the latter statement.
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3. Uncertainty relation

The orbits of each vector of the discrete basis |F,n) (3) and, in particular, the
constructed CS are eigenstates for a nonlinear operator €%, which is defined by its
action on an arbitrary vector |¥) as

Cylwy = (|l W)L, |¥). (30)

[+

First, we note that 7-(g)C,T(g) = C}, where T(g) are representation operators.
Indeed, it follows from the relation T-(g)I*, T(g) = 15[, and [C,, T(g)] = 0, that
t¢ is an orthogonal matrix, so that

TYg)CyT(9)|¥) = Y (¥|T NI, T()¥) T~ g)T T (9)|¥)

[

= (WL W) ) = C3|®).

After that, it is easy to show that the orbit T(g)|P, n) is an eigenstate for C;. We
write

C3T(9)|P,n) = T(g)Cy| P,n} = T(g) Y _(P,n|l",|P,n)L,| P, n) (1)

and use formulae (11) and (12) in the right-band side of (31),

S (Pl )P, n)L P, n)

a

1 1
= F[(Pnlazipimas - & 5 4t 1Po = AP IP)
U

A(P,n) = %(Zni _ Pz/N) = %Z(nu _ P/NY.
.u "

The latter results in
CyT ()| Pyn) = M P, n)T(g)| P, n). (32)

The eigenvalue A(P,n) attains the maximum for the highest weights, for which

>,n: = P? = max. The cs |P,u) belong to the orbit of the highest weight
{n} = {P,0,...,0}. Thus, we get
PN -1
cylPuy = ZUT 2 p oy, @33)

One can introduce a dispersion of the square of the length of the isospin vector
[12],

Acz=< 20) - SXULIR = (UG- Y. 64
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The dispersion serves as a measure of the uncertainty of the state |¥). Due to the
properties of the operators C, and C}, it is group invariant and has the least value
P(N —1)/2 for the orbits of highest weights, particularly for the Cs constructed with
respect to all the orbits of the discrete basis (3). The relative dispersion of the square
of the length of the isospin vector has the value

AC,/C, = N/(N + P) (35)

in the Cs, and tends to zero with h — 0,h = 1/P. This fact already indicates that
here the quantity & plays the role of Planck’s constant. In section 5 this analogy is
traced in more detail.

4. The CS overlap

The cs overlap can be evaluated in different ways. For instance, using the
completeness relation (20) and formulae (19), (4), we get

(P, u| P, v) =Z<P5U|P1n>(P?anﬁv
{n}

=Y Up o (W¥p 3 (5) = (u, 5). (36)
st

Comparing the result with equation (14), one can write
(P,UIP, v) = ‘I’P,ii(u') (37)

which once again confirms that the spaces Il » and II 5, in quantum mechanical sense,
are merely spaces of abstract vectors in the Cs representation.

Let W p(u) be a vector |¥) in the Cs representation, ¥ p(u) = (P, u|¥}.

Then the following formula holds

Vp(u) = f(P,u[P,v)‘IlP(v)duP(ﬁ,v). (38)

This means the Cs overlap plays the role of the §-function in the CS representation.
The modulus of the Cs overlap (36) possesses the following properties:

{P,ulPv)| <1 p]jm [{P,u|lP,v)=0 if u#v
{P,u|Pv} =1 only if u=r. (39)

This follows from the Cauchy inequality for the scalar product (1), [{u,®d)| <
v/ {u, &}{v, 0}, and from the conditions on the parameters of the CS, (u,#) =
{v,9) =1

We can introduce a function s(u,v) of the coordinates of two points of the
projective space CPN-1,

s%(u,v) = —In (P, u| P, v}|* = - P In|{u, &)|". (40)
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The properties of the modulus of the cs overlap (39) allow us to interpret the
function as symmetric. We remember that a real and positive symmetric obeys only
two axioms of a distance (s(u,v)} = s(v,u) and s{u,v) =0, if and only if u = v),
except the triangle axiom. For the Cs of the Heisenberg-Weyl group the function
s*(u,v) = —In |(u|v}|* = |u—v|?, and gives, in fact, the square of the distance on the
complex plane of the cs parameters. It turns out that, in the case under consideration,
the symmetric s(u,v) generates the metric in the projective space CPV-1, To
demonstrate this, it is convenient to change from the homogeneous coordinates u,,
subjected to the supplemental conditions (18), to the local independent coordinates
in CPN-1, For instance, in the domain where u, # 0, we introduce the local
coordinates o, i =1, N —1,

o+ u;fuy (41)
= Sp(-(/N) Y argey,)

u5=aiuN uN ’—__'1_’_2'&,:'2

In local coordinates (41) the symmetric (40) takes the form

Ale, B)N(B, &)
32 x ﬁ = —Pln—;'—_,_— 42
(8= =P B e,038,P) “
where Mo, B) = 1+ 52; o 3;.
Thus, we are in position to calculate the square of the ‘distance’ between two
infinitesimal close points o and o + do. For the ds?, which is defined as the
quadratic part of the decomposition of s?(, & + da) in the powers of dex, we find

dsz = gi;;da,-d&k g”'é = PA_Z(Q'g (35) [)\(a, &)61'7: nd &iak]

8*F

9t = 3a5a; F=PhMa,&) (43)

det{lg;]l = PN~1A"¥(a,8)  gF

1
'ﬁ)‘(as &){(8y; + &)

Now we can recognize in expression (43) the so cailed Fubini-Study metric of the
complex projective space CPN-! with a constant holomorphic sectional curvature
C = 4/ P [22]. It follows from (43) that we are dealing with a Kahlerian manifold.
As is well kmown, a Kahlerian manifold is a symplectic one and a classical mechanics
exists on it. The Poisson bracket has the form:

{f,g}=ig’"°*(af b9 _ 9f 39). @)

'é_f;i 3&;: ac'xk 30:1-

In the next section we show that the classical limit of the star commutator of the
operators symbols in the CS generates this Poisson bracket.
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5. The classical Limit

One of the advantages of ¢$ is that they allow operator symbols to be constructed
in a simple way, ie. a correspondence between operators and classical functions on
the phase space of a system. The reproduction of manipulations with operators in
the symbols language is equivalent to the quantization problem. This approach to
the quantization was developed by Berezin [8,25]. In this section we investigate the
classical limit in terms of operator symbols constructed by means of the cs.

Let us turn to the so called covariant symbol [25], which is, in fact, the mean
value of an operator A in the cs,

Q 4(u, @) = (P, u|Al P, u). (45)
We also restrict ourselves to operators which are some polynomial functions on the
gencrators, of power not more than some given M < P. Such operators can be

written via the operators el,,a”, using (10), (11), and be presented in the ‘normal
form,

M
A=) Afbfel, . ala”...a”%. (46)
It is easy to find the action of the operators aL,a" on the CS and to calculate the

symbols (45),
1

aLiP,u)=P+13 —|P+1,u) a¥|P,u) = Pa*|P — 1, u}
8
(Pyuld, =u,(P-Lu|  (Pule* = :ﬁ;(P + 1, ul. @7
Thus,
P
Q4(u,2) = E (P I‘)lAv:"'m prere Y By e Uy - (48)

Clearly, there is a one-to-one correspondence between an operator and its covariant
symbol. In local independent variables o, which were defined in (41), the covariant
symbols have the form

P N-1 -K
Qle,a) = E (P K)‘ (1+ Z I“:iz) AbBEo, ooy, &, . &, (49)

where the summatlon over the Greek indices runs from 1 to N as before, but one
has to count oy = 1.
In manipulations it is convenient to deal with the symbols

5 = (B uldlPo)
St = papy

N ~K
E  (P- K),(Z AP ) ABEE Yy By Dy, (50)
A

P! N-1 _ -K
QA(Q 18) Z (P I{)] ( 2 0!,:,6,‘)

xA‘“ ey, oy, By B, ay=Bn=1
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The symbols Q ,(a, 3) are analytical functions on « and 3 separately and coincide
with the covariant symbols (49) at 5 — «. These symbols but not {P, o| A| P, 5} are
a non-diagonal analytical continuation of the covariant symbols.

Using the completeness relation and equation (40), one can find for the symbol
of the product of two operators A, and A, :

Qo a,(u, 1) = /QAl(u,ﬁ)QAz(v,ﬁ)e‘“z("’”)dﬂp(ﬁ,v). (51)

Because s?(u,v) tends to infinity with P — oo, if u # v, and equals zero, if u = v,
one can conclude that, in that limit, the domain v = w gives only a contribution to
the integral. Thus,

Y, Qaian () = QAl(""‘-‘)QAz(u,ﬁ)/e_sz(u'")dﬂp(ﬁ,v)
= Q4,(u,0)Q 4, (u,a) h=1/P. 62)

The integral in (52) equals unity because of definition (40) and the completeness
relation.
If we define the so calied star mubtiplication of symbols according to Beresin

{8,25],

QA] * QAz = QA]A: (53)
then from (52} we have for the covariant symbols:
im Q4 * Qa, = Qa,Qay (54)

Now we are going to obtain the next term in the decomposition of the star
multiplication (53) in powers of A. It is is more appropriate to do this in local
independent coordinates c, because the decomposition includes differentiation with
respect to coordinates. Formula (51) in local coordinates (41) takes the form

Q.a,4,(a, &) =[QAl(a,ﬁ)QAz(ﬁ,5)6"32(“’ﬁ)dup(57ﬁ) (35)

(P4 N = et g (B, B H

'dRe 8;dIm g,
N-1
PP 1l -

d”P(B, ﬁ) =

where du (3, 3) is proportional to the well known G-invariant measure on C PN-1
(see equation (43)). Decomposing the integrand near the point 8 = «, and going to
the integration over z = § — «, we get in the zero and first order in power h:

a ,G) 8 &
QA1A2(Q,&) = QAl(a’a)QAz(a7&) + Q_gé‘:f 0!) Qg(a?' O.’)

N-1

: dRe z.dIm =,
X det”gi,m(a,&)”fzkzz.e"g.az-za H dRez;dlmz;
=1

O 8
= QAI(Q’&)QAZ(G,&)-E-g‘E QA,C(:: , &) Q,gia &)

T

(36)
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where the matrix g*f was defined in (43) and is proportional to k. Taking into
account the expression (44) for the Poisson bracket in the projective space CPN-1,
we get for the star commutator of the symbols

Qa *xQa— Qu,*Qa, =H{Q4,,Q4,) +0(h). (37

Equations (54) and (57) are Berezin’s conditions for the classical limit in terms of
operator symbols, where the quantity h plays the role of the Planck constant. This
property of » has already been noted in section 3, while investigating the uncertainty
relation. From this it is easy to see that the length of the isospin vector is proportional
to the signature P of a representation. Thus, the classical limit in this case is
connected to large values of the isospin vecior. In contrast to the ordinary case of
the Heisenberg-Weyl group, where the Planck constant is fixed, in the case under
consideration the Planck constant’ can in fact take on different values, which are,
however, quantized as of the quantity P is discrete.

6. Conclusion

In the conclusion we wish to stress once again that the explicit construction of the cs
for all the SU(N) groups appears to be possible due to an appropriate choice for the
irreducible representation of the group in the space of polynomials of a fixed power.
The direct way, using the commutation relations of the generators or the structure of
the matrices of the group in the fundamental representation, which is possible in the
case of the SU(2) group, mrns out to be difficult for generalization to any SU(N)
group. The explicit form of the SU(NN} ¢s is convenient for the derivation of their
properties, for the construction of the operator symbols and for the investigation of
the problem of the classical limit.
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