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Abstract An mplicit and uniform construction for coherent sfates (a) for all the 
SU( N) groups is given and, on this basis their properties are investigated. The cs are 
parametrized ly lhe dols of a m e t  space, which is, in this panicular case, the projective 
space CPN-' and which plays the role of the phase space in the mmsponding dasical 
mechanics The logarithm of lhe modulus of the cs avpriap, k ing  interpreted as a 
symmevic in the space, gives the FubiniSrudy metric in CPN-' .  The classical limit is 
investigated in terms of operator symbols h = P-' (where P is the signature of the 
representation) plays the role of Planck's mnslant. The classical limit of the so called 
slar commutator of the symbols generates lhe Poisson bracket in the mrresponding 
phase space. The cs form an overcompleted system in the represenlalion space and, as 
quantum slates p e s  a minimum unceminly, they minimize an invariant dispersion of 
the quadratic Casimir operator. 

1. Introduction 

As is well !mown, coherent states (a) are widely and fruitfully used in different 
areas of theoretical physics [lS]. The cs introduced by Schrodinger and Glauber 
turned out to be orbits of the Heisenberg-Weyl group. This obsewation, by analogy, 
allowed some general definition of Cs for any Lie group [6,7J to be formulated as 
orbits of the group factorized with respect to a stationary subgroup. A connection 
between the cs and the quantization of classical systems, in particular systems with 
a curved phase space, was also established [&SI. By origin, the cs are quantum 
states, but, at the Same time, they are parametrized by dots of the phase space of 
a corresponding classical mechanics. This circumstance makes them very convenient 
for afialysing the correspondence between quantum and classical descriptions. All 
this explains the interest in both the investigation of general problems of cs theory 
and the construction of Cs of concrete groups. 

The cs of such important physics groups as SU( N) are of special interest, in 
particular in connection with the description of spinning and isaspinning systems. 
The cs of the group SU(2) are well hown and constructed explicitly. One can point 
out some of the first references [lo-151, where these states were constructed from 
the basis of the well investigated structure of the SU(2) matrices in the fundamental 
representation. Another approach to the a construction of the SU(2) group was used 
by Berezin [8,9]. This approach was connected with the use of the representations 
of the SU(2) group in the space of polynomials of the power not more than a given 
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one. As to the cs of the SU(N) groups with arbitrary N, their explicit construction, 
in the framework of the general definition, by means of a direct action of unitary 
representation operators on some vectors (for example on highest weights), using 
only commutation relations betwen generators, is a complicated problem, where 
complications essentially grow with the number N (one ought to say that many of 
the properties of the cs can be derived from the general definition without giving them 
an explicit form [16], and used, for example, in the derivation of 1 / N  decompositions 
[17], in path integral construction [18] and so on [19]). Nevertheless, the problem 
can be solved explicitly if appropriate representations of the SU( N) groups, namely 
representations in the space of polynomials of a k e d  power are chosen. Using such 
representations, we construct here the cs for all the SU(N) groups in a uniform 
way and, in particular, as orbits of highest weights, and on the basis of this explicit 
form we investigate some properties of the cs and the problem of the classical limit. 
The method used can be considered as a generalization of Berezin's method for the 
SU(2) group in a gauge-invariant form (with an extended number of variables in the 
coset space), and Gdmor's method of a wavefunction construction for the system of 
many identical N-level atoms in an external field, with a linear interaction for the 
generators of the SU( N) algebra [20]. 

The representations in the space of polynomials with a &xed power are equivalent 
to the total symmetric irreducible unitary representations of the SU( N) groups. 
The stationary subgroups of the highest weights, in the case under consideration, 
are U(N - l), so that the cs are parametrized by dots of the coset space 
SU(N)/U(N - l), which plays the role of the phase space of the corresponding 
classical mechanics and, at the Same time, is the well known projective space CPN-'.  
The logarithm of the modulus of the cs overlap, being interpreted as a symmetric 
in the space CPN- ' ,  generates the FubiniStudy metric in the space. The cs form 
an overcompleted system in the representation space and, as quantum states, they 
minimize an invariant dispersion of the quadratic Casimu operator. The classical 
limit is investigated in terms of operator symbols, which are constructed as mean 
values of the operators in the cs. The quantity h = P-', where P is the signature of 
a representation, plays the role of the Planck constant. The classical limit of the so 
called star commutator of the symbols generates the classical Poisson bracket in the 
corresponding phase space. In addition, we present a direct way of constructing the 
SU(2) cs in a k c k  space. This derivation of the cs of the SU(2) is technically new and 
instructive to our mind as it allows both ways to be compared and problems with the 
N > 2 generalization can be better understood. The present work is a continuation 
of our papers [21], where some of the results were preliminarily expounded. 
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2. Construction of cs of the SU( N) groups 

We are going to construct the cs of the SU(N) groups as orbits in some irreducible 
representations of the groups, factorized with respect m stationary subgroups. First, 
we describe the corresponding representations. 

Let C N  be the N-dimensional space of complex lines z = ( z f i ) , p  = m 
with the scalar product ( z , &  = E,, f F z i , p  = m and eN is the dual space of 
complex columns with the scalar product ( i , i ' ) ~  = E, Zfi?. The anti-isomorphism 
is given by the relation z CI i e f ,  = ifi. The mixed (Dirac) scalar product between 
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the elements of CN and EN is defined by the equation 

(z',,e) = (,e',4)E = (z ' ,z )C = z p .  (1) 

Let g be the mavices of the fundamental representation of the SU( N )  group. 
This representation induces irreducible representations of the group in the spaces I I p  
and 8, of polynomials of a fixed power P on the vectors z and 4 respectively, 

The anti-isomorphism z CI E induces the correspondence U , ( i )  = m. The 
representation (2)  is equivalent to the one on total symmetric tensors of signature P.  
So, we will call P the signature of the irreducible representation. 

Clearly the monomials 

In} = [ "1 3 . .  . I %NI nfi = p }  

form a discrete bash in nP, and the monomials Vp,{nj(4) = V.p,(nl(z) form a 
basii in fi;;. The monomials obey the remarkable relation 

which is group invariant on account of the invariance of the scalar product (1) under 
the group transformation, (z;, ig) = ( z ' , i ) .  We also introduce the scalar product of 
two polynomials 

Using the integral 

it is easy to verify that the orthonormality relation holds: 

PP,{n}lQP,{rd}) = (P,nlP,n') = 6{,),{,(}. (6) 
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The completeness relation takes place as well 
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where JP,n)  and (P,a1 are Dirac’s notation for the vectors \uq,{.,(z) and 
Wp,{n)(Z)  respectively, and I p  is the identity operator in the irreducible space of 
representation of signature P. 

It is convenient to introduce the operators a! and a”,  which act on the basis 
vectors by formulae 

J- a 
a”\kp,,n,(Z)=-\up,I,)(2)-a”IP,n)= Pa IP-1,  ..., n,- l ,  ...) 

82” 
[aP,a?] = 6:,IaJ’,aY] = [aL,a?] = 0. (8) 

One can lind the action of these operators on the left, 

l a  
(P,n,aL = p ( P  P - 1,. .. ’7%” - l,.. . I = -- P a i ,  Q P , { n } ( j )  

( P , ~ I ~ ’ = J K ~ ~ & T ~ & P + I  ,..., n,+1, ... I 
= ( P +  1)ZQP,{.}(Z). (9) 

Their quadratic combinations A; can s e m  as generators in each irreducible 
representation of signature P, 

(10) 
a A; = .La“ = z - [A;,A!] = 6IA; - &;Ai 

fi az, 

A;IP,n) = &”(a, + 1)IP ,... , n v  - 1 ,... , np  + 1 ,...) 

AEJP,n) = n,IP.n) 

p # U 

C A E J P , n )  = PJP,n ) .  
I” 

Clearly, the A; are Cartan’s generators and (nl, ... ,nN) are the weight vectors. 
The independent generators f,, a = 1, NZ - 1, can be expressed in terms of the 
operators A;, 

where are the generators in the fundamental representation, [Fa,rb]  = ifab,r, 
and fabC are the structure constants of the SU( N) group. The quadratic Casimir 
operator C, = E, pi can only be expressed via the operators A, b y means of the 
well known formula 
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and evaluated in every irreducible representation explicitly, 

1 - - P ( N + P ) ( N - 1 )  6; C2 = -AYAi  2 ’  = 2N A; - 
x 

Now we. are going to construct the orbits of highest weights (of a vector of the 
= P). Let this highest weight be the state 

Then we get, in accordance with (2), 
basis (3) with the maximal length 

@p,tp,b-u)(z) = 

m ) Q P , ( P , U .  ..)(I) = [z,gPIP = (z, i i)p iig = g; (14) 

where the vector ii E EN is the first column of the SU( N) matrix in the fundamental 
representation. 

If we interpret the representation space as a Hilbert one in quantum mechanics, 
then we have to identify all the states which differ from each other by a constant 
phase. Fbr this let us turn to the states of the orhit (14). One can notice that the 
transformation arg V -+ arg6.P + X changes all the states (14) hy the constant phase 
exp(iPX). So, we can treat the transformation as a gauge one in a certain sense. To 
select only physically meren t  quantum cs from all the states of the orbit, we have 
to impose a gauge condition on 5, which fixes the total phase of the orbit (14). Such 
a condition may be chosen in the form E,, arg i iP  = 0. ’Eking into account that the 
quantities Ti obey the condition liP12 = 1, by their origin as elements of the first 
column of the SU( N) matrix, we get the explicit form of the cs of the SU( N )  group 
in the space I I p :  

@k‘P,dz) = (z,fi)p (15) 

P In the same way we construct the orbit of the highest weight Q p , { p , u , , , , ) ( Z )  = (E’) 
in the space a,, and the corresponding cs have the form 

@P+(E) = ( U , 4 p  (17) 

Clearly, QP,&(z)  = W P , * ( E ) , z  ++ E,u * ii. 
It is easy to see that all the elements of the discrete basis (3) with weight vectors 

of the form (nc = 6;P,p = 1,) belong to the cs set (15) with parameters 
(f ip  = 6tP,j4 = 1,). An analogous statement is valid for the dual hasis and to 
the cs (17). 

The quantities ii and U, which parametrized the cs (15) and (16), are elements 
of the coset space SU(N)/U(N - l) ,  in accordance with the fact that the stationary 
subgroups of both the initial vectors from the spaces IIp and fi, are U( N - 1).  At 
the same time, the coset space is the so called projective space CPN-I (we remember 
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that the complex projective space is deEned as the set of all non-zero vectors z in 
CN, where z and Xz, X # 0, are equivalent [22]). Equations (16) or (18) are just 
the possible conditions which define the projective space. The coordinates U or ir 
are called homogeneous in CPN-' .  Thus, the constructed a are parametrized by 
the elements of the projective space CPN-' ,  which is a symplectic manifold 1221 and 
can therefore be considered to be the phase space of classical mechanics. 

'Ib decompose the a in the discrete bases, we. can use the scalar product (5) 
directly, but there exists a simpler way. One can use relation (4), as the right-hand 
side of equation (4) can be treated as cs (15) or (17). Thus, it follows from (4) 

D M G h a n  and A L Shelepin 

(P,ulP,n) = QP,(")(.) (P,nlP,u)  = Qp,{ - ) (G)  (20) 

where IP,u) and (P,uI are Dirac's notation for the cs 1Yp,<(z) and q p , * ( Z )  
respectively. So, we come to the statement which is important for understanding 
the result: the discrete bases in the spaces I I p  and l ip  are the same as the ones in 
the cs representation. 

The completeness relation for the cs can be extracted from the equation (6). 
Using formulae (20) in integral (6), we get 

This proves the completeness relation 

We have to note that the explicit and uniform construction of the cs for all the 
groups SU( N) proved to be possible due to the choice of irreducible representations 
of the group in the spaces of polynomials of a fixed power. One can try to construct 
orbits directly, acting, by means of the unitary representation operators, on the highest 
weights, but an explicit result can be found relatively easy only for the SU(2) group. 
Later we demonstrate such a way for the latter case in a Fock space. 

Let us have a Fock space set up by means of two types of Bme annihilation 
and creation operators a, ,a: ,  X = 1,2, [a, ,a: , ]  = 6A,A,. One can realize the 
commutation relations [s i ,  Y j ]  = icijk.fk for the generators f i , i  = 1,2,3, of the 
SU(2) group in the Fock space, choosing the operators .fi in the form (the so called 
JordanSchwinger representation [U]) 

where mi are Pauli matrices. So one gets 
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The occupation numbers basis In,nz) = (nl!n~!)-l~z(~~)~~(u~)~~~O),n~ = 0, 1, ..., 
is correct for the operators .!, and 3, 

.71nln2) = j\nlnz) 

Y,ln,n,)= mlnlnz) 

j = $(n,+ nz) = O,t/2,1,3/2, ... 
m =  $(nl-nz) = - j , - j +  1, . . . , j -  1,j. 

Thus, we get the well known domains of variations in the eigenwlues j and 
m. In terms of these quantities the bask ln1n2) can be witten in the form 
ITZlnz) = (j,,) = ((j + m)!( j  - m)!)-1/2(Q~)’f”(Q:)j-”lo). &J 

It is !mown that an element g of the SU(2) group can be parametrized by the Euler 
angles cpl, 6, p2, and presented in the form 

(23) - - JteiSJleivz4 

where J, = ui/2 are the generators of the SU(2) group in the fundamental 
representation. Therefore, the operators of the representation T ( g ) ,  acting in the 
Fock space, can be written as 

ivt.i,eie.i,eip-~.f~~ T(s) = e 

One can derive the formula 

(24) 

which allows one to present the operators T(g) in a more appropriate form for 
further calculations (an analogue of the normal form), 

(cos ;e)zJseitao :sj+eidz.  (25) ipl.i,eitaa yes- %) = e 

It is clear that the linear envelope of vectors from the Fock space, with j k e d ,  
forms an invariant and irreducible, relative to the representation T(g), subspace of 
dimensionality 2 j  + 1. Let us construct the orbit of the highest weight l j , j ) .  Denote 
such an orbit as 

l j 7 ‘ p , , ~ 7 ’ p 2 )  = T(S)b,j). (26) 
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Using equation (U), one can calculate the orbit (26) in the ocupation numbers 
representation, 

D M Gilman and A L Shelepin 

where CA = gt are elements of the fmt column of the SU(2) matrix (23). If we 
interpret vectors of the orbit as quantum mechanical states, then all the vectors, 
which differ from each other by a constant phase factor, have to be identified. In 
the case under consideration a variation in the Euler angle 'p2 changes only the 
phase of the orbit (26) (it gives the the factor exp i6'p2(nl + n2)/2 = expi6'p2j). To 
choose only one representative from the physical equivalent set of vectors we have to 
impose a gauge condition, which fues the angle p2. This means we have to change to 
the coset space SU(2)/U(1) where U(l) is the Abelian stationary subgroup of Euler 
angle 'p2 rotations. The gauge condition we choose is 'p2 = -+T,  which corresponds 
to the condition Ex arg CA = 0 for the elements of the first column of the SU(2) 
matrix. Besides, these elements originally obey the condition CA ]CAIz = 1. Thus, 
physically different elements of the orbit (26), which we call the cs of the SU(2) 
group, are parametrized by the elements of the projective space CP', the latter 
being the ordinaq two-dimensional sphere. In the occupation number representation 
(so called Bloch states [lo]) they have the form 

where the angle 'p = $T - 'pl together with B and j are the spherical 
coordinates of the mean values of the isospin vector in the cs, (j&olflj&p) = 
j ( s i n B ~ s ' p , s i n B s i n ' p , c o s ~ ) .  Thus, the (s are parametrized by the dots of the 
two-dimensional sphere of the quantized radius P/2 = j = 0,1/2,1, .... The 
completeness relation holds: 

where 1, is the identical operator in the representation space of signature P. 
Thus, one can see that the 'direct' way gives the same result for the case of the 

SU(2) group (compare (28) with (20) and (3)), as we have previously obtained in 
a simpler way. Moreover, the disentanglement of the representation operators for 
N > 2, similar to formula (B), is a difftcult problem, where the complexity essentially 
grow with the number N .  Some results of such a disentanglement for the SU(3) 
group are presented in [a] and can serve as a illustration of the latter statement. 
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3. Uncertainty relation 

The orbits of each vector of the discrete basis I P, n) (3) and, in particular, the 
constructed cs are eigenstates for a nonlinear operator C;, which is defined by its 
action on an arbitrary vector Iq) as 

Fmt, we note that T-'(g)C;T(g) = C;, where T(g)  are representation operators. 
Indeed, it follows from the relation T-l(g)f,T(g) = t :p ,  and [Cz,T(g)] = 0, that 
t: is an orthogonal matrix, so that 

T - ' ( g ) C X ? ) I q  = C(~lT- ' (s)f ,T(g)l~)T- ' (g)f .T(g)l~!)  
a 

After that, it is easy to show that the orbit T(g)lP,n)  is an eigenstate for C;. We 
write 

CiT(g)lP,  n) = T(g)C;IP, n) = T(g) c(P, nlf,lP, n)f,lP, n)  

C(p>~lfalp3n)falp,4 

(31) 
0 

and use formulae (11) and (12) in the right-hand side of (31), 

a 

1 
= 3 [ (P, nlA;IP, n)Af - + A:] I P, n)  = A( P, n)l P, n) 

P 

The latter results in 

C;T(g)lP,n) = A(P,n)T(g)lP,n).  (32) 

The eigenvalue A( P, n) attains the maximum for the highest weights, for which 
C,n', = P* = m a .  The cs IP,u) belong to the orbit of the highest weight 
{n) = { P,O,. . . ,O}. Thus, we get 

Pz( N - 1) 
c;IP,u) = 2 N  IP,U). (33) 

One can introduce a dispersion of the square of the length of the isospin vector 
1121, 
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The dispersion serves as a measure of the uncertainty of the state IQ). Due to the 
properties of the operators C, and C;, it is group invariant and has the least value 
P( N - 1) /2 for the orbits of highest weights, particularly for the cs constructed with 
respect to all the orbits of the discrete basis (3). The relative dispersion of the square 
of the length of the isospin vector has the value 

D M Gihan and A L Shekpin 

AC2JC2 = N / ( N  t P )  (35) 

in the cs, and tends to zero with h -+ 0, h = 1/P. This fact already indicates that 
here the quantity h plays the role of Planck's constant In section 5 this analogy is 
traced in more detail. 

4. I h e  cs overlap 

The cs overlap can be evaluated in different ways. For instance, using the 
completeness relation (20) and formulae (19), (4), we get 

( P , U I P , U )  = ~ P , U l P , n ) ( P , n l P , U  
{n} 

Comparing the result with equation (14), one can write 

( P > U l P , U )  = Q p , g ( U )  (37) 

which once again confirms that the spaces lIp and np, in quantum mechanical sense, 
are merely spaces of abstract vectors in the cs representation. 

Let q P ( u )  be a vector IQ) in the cs representation, Q p ( u )  = (P,uIQ). 
Then the following formula holds 

*,(U) = J ( p , ~ l p , ~ ) Q p ( ~ ) d ~ p ( ~ , u ) .  (38) 

This means the cs overlap plays the role of the &function in the cs representation. 
The modulus of the cs overlap (36) possesses the following properties: 

lim I(P,ulP,u)=O i f u # v  
P-CO I(P,ulP,4 < 1 

~ ( P , u ~ P , w ) ~  = 1 only if U = U .  (39) 

This follows from the Cauchy inequality for the scalar produa (l), 1(~,6)1 < d-, and from the conditions on the parameters of the cs, ( U ,  G) = 
( v , 6 )  = 1. 

We can introduce a function s ( u , u )  of the coordinates of two points of the 
projective space CPN-',  

6 ' ( U , U )  = - h ~ ( ~ , U ~ ~ , U ) ~ '  = - ~ h ~ ( U , 6 ) ~ z .  (40) 
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The properties of the modulus of the cs overlap (39) allow us to interpret the 
function as symmetric. We remember that a Ea1 and positive symmetric obeys only 
two axioms of a distance (.(U, v) = s (v ,  U) and s ( u ,  U) = 0, if and only if U = v), 
except the triangle axiom. For the cs of the Heisenberg-Weyl group the function 
s2(u,v) = -In 1(u1~)1~ = I u - v ~ ~ ,  and gives, in fact, the square of the distance on the 
complex plane of the cs parameters. It turns out that, in the case under consideration, 
the symmetric s ( u , v )  generates the metric in the projective space CPN-'. ?b 
demonstrate this, it is convenient to change from the homogeneous coordinates up,  
subjected to the supplemental conditions (18), to the local independent coordinates 
in CPN-'. For instance, in the domain where uN # 0, we introduce the local 
coordinates ai , i  = 1, N - 1, 

OL; + U j / U N  (41) 

In local coordinates (41) the symmetric (40) takes the form 

where A(a,p) = l+Ciajpi. 
Thus, we are in position to calculate the square of the 'distance' between two 

infinitesimal close points a and a + d a .  For the ds2, which is defined as the 
quadratic part of the decomposition of s 2 ( a ,  OL + d a )  in the powers of da ,  we find 

dsZ = gihdaid&, gib = PX-2(a,&)[X(a, &)hi,  - & ~ o L , ]  

F = PInX(a,&) 8ZF g.- - 
- aa+, (43) 

. 1  
P detIIgiiI1 = PN-'X-N(a,&) gki = - X ( a , & ) ( h k i  t &&cui). 

Now we can recognize in expression (43) the so called FubiniStudy metric of the 
complex projective space CPN-' with a constant holomorphic sectional curvature 
C = 4/ P [22]. It follows from (43) that we are dealing with a Kahlerian manifold. 
As is well !mown, a Kahlerian manifold is a symplectic one and a classical mechanics 
exists on i t  The Poisson bracket has the form: 

In the next section we show that the classical limit of the star commutator of the 
operators symbols in the cs generates this Poisson bracket. 
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5. The dassical limit 

One of the advantages of cs is that they allow operator symbols to be constructed 
in a simple way, Le. a correspondence between operators and classical functions on 
the phase space of a system. The reproduction of manipulations with operators in 
the symbols language is equivalent to the quantization problem. This approach to 
the quantization was developed by Berezin [S, 251. In this section we investigate the 
classical limit in terms of operator symbols constructed by means of the a. 

Let us turn to the so called covariant symbol [U], which is, in fact, the mean 
value of an operator A in the cs, 

We also restrict ourselves to operators which are some polynomial functions on the 
generators, of power not more than some given M < P. Such operators can be 
witten via the operators a i , u Y ,  using (lo), (ll),  and be presented in the ‘normal’ 
form, 

D M Gibnan and A L Shelepin 

Q~(u3. iL)  = (P,utLlAIP,n). (45) 

M 

(46) a = AP1-PK.t P , .  .. akK a”’ .. . (1°K. 

K=U 

It is easy to find the action of the operators ai,.” on the a and to calculate the 
symbols (45), 

IPt  1,u) a”lP,u) = PiLPIP-l,u) 

a 
(P,ulap = - ( P t  1,uI. 

8% 

l a  
PtlaGP uEIP,u) = -- 

(47) (P,ulaf, =u,(P-I ,ul  

Thus, 

Clearly, there is a one-to-one correspondence between an operator and its covariant 
symbol. In local independent variables a, which were defined in (41), the covariant 
symbols have the form 

where the summation over the Greek indices runs from 1 to N as before, but one 
has to count aN = 1. 

In manipulations it is convenient to deal with the symbols 
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The symbols QA( a ,  8) are analytical functions on a and 8 separately and coincide 
with the covariant symbols (49) at p -+ a. These symbols but not ( P , a l A [ P , p )  are 
a non-diagonal analytical continuation of the covariant symbols. 

Using the completeness relation and equation (N), one can find for the symbol 
of the product of two operators A, and a, : 

Q A , A , ( U > ~ )  = / &a,(U,.iti))QAZ(v,c)e-"Z("'U)dp,(.it,v). (51) 

Because s2(u,  U) tends to infinity with P + m, if U + v, and equals zero, if U = v, 
one can conclude that, in that limit, the domain v ES U gives only a contribution to 
the integral. Thus, 

A-U lim Q A , A , ( u , ~ )  = Q a , ( ~ , ~ ) Q a , ( ~ r ~ ) / e - 3 z ( U ' V ) d ~ p ( ~ l U )  

= QA, (u ,C)QA, (U ,C)  h = 1 / P .  (52) 

The integral in (52) equals unity because of definition (40) and the completeness 
relation. 

If we define the so called star multiplication of symbols according to Beresin 
[8> U]? 

QA, * & A ,  = QA,A, (53) 

then from (52) we have for the covariant symbols: 

Iim &A, * &A, = QA,QA,.  (54) A-0 

Now we are going to obtain the next term in the decomposition of the star 
multiplication (53) in powers of h. It is is more appropriate to do this in local 
independent coordinates a, because the decomposition includes differentiation with 
respect to coordinates. Formula (51) in local coordinates (41) takes the form 

where dpp(p ,p )  is proportional to the well known G-invariant measure on CPN-'  
(see equation (43)). Decomposing the integrand near the point p = a, and going to 
the integration over z = p - a, we get in the zero and first order in power h: 
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where the matrix g" was defined in (43) and is proportional to h. %king into 
account the expression (44) for the Poisson bracket in the projective space Cl"-', 
we get for the star commutator of the symbols 

Equations (54) and (57) are Berezin's conditions for the classical limit in terms of 
operator symbols, where the quantity h plays the role of the Planck constant. This 
property of h has already been noted in section 3, while investigating the uncertainty 
relation. From this it is easy to see that the length of the isospin vector is proportional 
to the signature P of a representation. Thus, the classical limit in this case is 
connected to large values of the isospin vector. In contrast to the ordinary case of 
the Heisenberg-Weyl group, where the Planck constant is fixed, in the case under 
consideration the 'Planck constant' can in fact take on different values, which are, 
however, quantized as of the quantity P is discrete. 

6. Conclusion 

In the conclusion we wish to stress once again that the explicit construction of the cs 
for all the SU( N) groups appears to be possible due to an appropriate choice for the 
irreducible representation of the group in the space of polynomials of a k e d  power. 
The direct way, using the commutation relations of the generators or the structure of 
the matrices of the group in the fundamental representation, which is possible in the 
case of the SU(2) group, turns out to be difficult for generalization to any SU(N) 
group. The explicit form of the SU(N) ci is convenient for the derivation of their 
properties, for the construction of the operator symbols and for the investigation of 
the problem of the classical limit. 
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